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Definition of surface integral

We are given a vector field ~F in space and a surface S in the domain of ~F . The
general idea of surface integral is

surface integral of ~F over surface S=
the limit of a sum of terms each having the form

(component of ~F normal to a piece S)(area of that piece of S).

Here’s how we make the idea more precise. Break the surface S into pieces and
lablel these pieces ∆Sij. We use two indices because the surface is a two-dimensional
thing. Think of the index i as running from 1 to m and the index j as running from
1 to n for a total of mn pieces. (See Figure 1 at the end.) Define ∆ ~Aij as the vector
with direction normal to the piece ∆Sij and magnitude equal to the area of the piece
∆Sij. In each piece, pick a point Pij. At each of the points, compute the vector field

output ~F (Pij). Recall that the dot product ~F (Pij) · ∆ ~Aij can be written

~F (Pij) · ∆ ~Aij = ‖~F (Pij)‖‖∆ ~Aij‖ cos θ =
(

‖~F (Pij)‖ cos θ
)

‖∆ ~Aij‖.

The last expression shows that this dot product gives the component of ~F normal to
∆Sij times the area of ∆Sij. This is what we want to add up. We define the surface

integral of ~F for the surface S as the limit of such a sum:

∫∫

S

~F · d ~A = lim
m,n→∞

n
∑

i=j

n
∑

i=1

~F (Pij) · ∆ ~Aij

You can think of d ~A as an “infinitesimal” version of ∆ ~Aij. The direction of d ~A is
normal to the surface at each point.

In order to compute a surface integral, it is useful to think of d ~A in the following
way. Consider the “grid” on the surface S (as shown in Figure 1 at the end) as
consisting of two families of curves, with each family consisting of those curves that
are locally parallel, but not globally parallel in general. Here, locally parallel means
that the family of curves is parallel if we zoom in on any point. An important thing
here is that within each family, no two curves intersect. The curves in the first family
do not have to be perpendicular to the curves in the second family. At a point P on
the surface, take C1 to be the curve from one family that goes through P and C2 to
be the curve from the other family that goes through P . Let d~R1 be the infinitesimal
displacement vector tangent to C1 at P and let d~R2 be the infinitesimal displacement
vector tangent to C2 at P . Consider the cross product d~R1×d~R2. Recall the geometric
definition of cross product: (1) the direction of the cross product is perpendicular to



both vectors in the product (as given by the right hand rule); and (2) the magnitude
of the cross product is the area of the parallelogram formed by the two vectors in the
product. The cross product d~R1 × d~R2 is thus normal to the surface at P (since d~R1

and d~R2 are both tangent to the surface) and has magnitude equal to the area of the

surface piece with edges d~R1 and d~R2. Thus

d ~A = d~R1 × d~R2.

Computing surface integrals

In computing line integrals, the general plan is to express everything in terms of
two variables. This is a reasonable thing to do because a surface is a two-dimensional
object. The essential things are to determine the form of d ~A for the surface S and
the outputs ~F (P ) along the surface S, all in terms of two variables. How to proceed
depends on how we describe the curve. In general, we have two choices: a relation
among the coordinates or a parametric description. The solution to the following
example illustrates how to work with the first of these.

Example: Compute the line integral of ~F (x, y, z) = x ı̂ + y ̂ + z k̂ for the surface S

that is the piece of the plane 12x − 6y + 3z = 24 with x ≥ 0, y ≤ 0, and z ≥ 0.

Note: To get started, you should draw a picture showing the surface and a few of the
vector field outputs along the surface.

Solution : From the equation of the plane, we compute

12 dx − 6 dy + 3 dz = 0.

This relates small displacements dx, dy, and dz along the plane. See Figure 2.
To generate one family of curves on the surface, we can use x = constant. This

gives us dx = 0. Using this in the previous relation and solving for dz gives dz = 2dy.
We can now use these to get

d~R1 = dx ı̂ + dy ̂ + dz k̂ = 0 ı̂ + dy ̂ + 2dy k̂ =
(

̂ + 2 k̂
)

dy.

To generate the other family of curves on the surface, we can use y = constant.
This gives us dy = 0. Using this in the above relation and solving for dz gives
dz = −4dx. We can now use these to get

d~R2 = dx ı̂ + dy ̂ + dz k̂ = dx ı̂ + 0 ̂ − 4dx k̂ =
(

ı̂ − 4 k̂
)

dx.

With d~R1 and d~R2 in hand, we can compute d ~A as

d ~A = d~R1 × d~R2 =
(

̂ + 2 k̂
)

×
(

ı̂ − 4 k̂
)

dxdy =
(

−6 ı̂ + 3 ̂ − k̂
)

dxdy.

You should think about the direction these vectors point. We have made choices that
result in d ~A pointing in a certain direction. A different set of choices could result in
d ~A pointing in the opposite direction.
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We now want to express the vector field outputs along the surface S in terms of
the same two variables (x and y in this case) that we have used for d ~A. We will use
the equation of the plane to solve for z giving

z = 8 − 4x + 2y.

Thus, on the surface, the vector field has outputs

~F = x ı̂ + y ̂ + (8 − 4x + 2y) k̂.

We now compute

~F · d ~A =
(

x ı̂ + y ̂ + (8 − 4x + 2y) k̂
)

·
(

−6 ı̂ + 3 ̂ − k̂
)

dxdy

=
(

−6x + 3y − (8 − 4x + 2y)
)

dxdy

=
(

−2x + y − 8
)

dxdy

The last things we need in order to carry out the integration are the relevant
bounds on the variables x and y. The projection of the surface into the xy-plane is
the triangular region shown in Figure 3. We can use

0 ≤ x ≤ 2 and 2x − 4 ≤ y ≤ 0

to describe this region.
Putting all of this together, we have

∫∫

S

~F · d ~A =

∫ 2

0

∫ 0

4−2x

(

−2x + y − 8
)

dxdy = some work to do here = −32.

The sign here is a result of the choices we made in computing d ~A. A different set
of choices could result in the value +32. You should think about the two possible
directions for d ~A.

If you have corrections or suggestions for improvements to these notes, please contact Martin

Jackson, Department of Mathematics and Computer Science, University of Puget Sound,

Tacoma, WA 98416, martinj@ups.edu.
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Figure 1. The elements used in the definition of surface integral. Top left: The surface
S broken into pieces ∆Sij. Top right: The points Pij. Bottom left: The

area vectors ∆Aik. Bottom right: The vector field outputs ~F (Pij). Note
that vectors are displayed without arrow heads to reduce clutter. The base
of each vector is on the surface.
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Figure 2. The piece of the plane that is the surface for the example (right) and the
projection of this plane into the xy -plane (left).
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